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ALIAS-FREE WIGNER DISTRIBUTION FUNCTION AND

COMPLEX AMBIGUITY FUNCTION FOR DISCRETE-TIME SAMPLES

INTRODUCTION

The attributes of the Wigner distribution function (WOF) have come under

close scrutiny in recent years; see, for example, [1,2,3] and the references

listed therein. However, the numerical calculation of the WOF from discrete

time data still suffers from the belief that the sampling rate of a given

time waveform must be twice as large for computation of an alias-free WDF,

as the rate required for reconstruction of the original continuous

waveform. If true, this would double the number of data points that must be

collected to cover a given time interval, and greatly increase the number of

subsequent computations. This contention applies to the complex analytic

waveform as well as to a real waveform.

It is the purpose of this report to establish the fact that the sampling

rate need not be doubled, and that an alias-free WDF, as well as complex

ambiguity function (CAF), can still be quickly and efficiently obtained,

provided that L.] the information in the available data stream is extracted

and properly processed. Some recent effort on this topic [4,5,6] did not

discover the particular complete set of processing required, leading to the

conjecture [5, page 1068] that it was not possible to accomplish the desired

goal for the WOF.
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We will show not only that the desired goal can be achieved, but that

the required data processing for an alias.-free WOF and CAF is strikingly

simple. Our approach to the solution initially involves the four

time/frequency domains associated with the WOF and its variouer Fourier

transforms. However, in hindsight, an extremely simple and direct method of

obtaining the WOF and CAF will be presented, which requires only FFTs (fast

Fourier transforms) for its implementation.

An alias-free discrete WDF and CAF have been achieved in (7] and [8], by

means of interpolating either the waveform time samples or the spectrum

frequency samples. Also, the ranges and required increment sizes in time

and frequency of the various two-dimensional functions have been carefully

scrutinized in [7], by discrete Fourier transform techniques. However, that

approach does not illuminate how the various aliasing lobes interact and can

be controlled. Furthermore, we utilize a continuous approximation approach

(rather than a discrete Fourier technique), which lends tremendous insight

into the shortcomings of current processing methods and brings out the

fundamental properties of the various two-dimensional functions and their

domains of definition. The final discretization in time and frequency is

only done with deference to practical computer evaluation.

In fact, we will not define a discrete WDF or CAF here. Instead, we

attempt to recover the WDF and CAF of the original continuous time waveform,

by developing approximations and then controlling or eliminating the errors

in these approximations, Only after this is accomplished, do we then address

discretizatlon of the time and frequency arguments of the two-dimensional

functions of interest.

2
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NOIAT [ON

For economy of presentation, a number of notational and manipulative

shortcuts are employed here. We have collected them all together at this

point, and will employ them freely later, with minimal comment. We define

1 for IxI < I/21
rect(x) - , (1)

0otherwise

sinc(x) - for all x (2)

The symbols f and I without limits denote that integration and summation

are to be conducted over the complete range of nonzero integrand and summand,

respectively.

The convolution of two functions g(x) and h(x) is denoted by

g(x) h(x) d fdu g(u) h(x - u) , (3)

The two-dimensional convolution of two functions is

g(x,y) a h(x,y) J du dv g(u,v) h(x - u,y - v) , (4)

The Fourier transform of a time domain function s(t) into its spectrum

in the frequency domain f is according to the pair of relations

S(f) - £ dt exp(-i2ift) s(t)

s(t) - fdf exp(12ffft) S(f) (5)

3
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Then the Fourier transform of a product of time functions is equal to the

convolution of the two spectra:

S dt exp(-12ift) a(t) b(t) - A(f)6B(f) . (6)

The infinite impulse train in time t, with spacing a, is

a 2 (t - na) , n integer (7)

n

Its Fourier transform is another infinite impulse train in frequency f, with

reciprocal spacing:

£dt exp(-12wvft) a 2 S(t - nA) a 6(f - ~).(8)

n n

Combination of (6) and (8) leads to a very useful relation that is. employed

frequently in the following:

fdt exp(-i2irft) a(t) a >6(t - nA) a

n

A(f) a (f A(f A (9)

The discrete Fourier transform operation arises frequently; consider

Z(n) 2 exp(-12wkn/N) z(k) for all n . (10)

k

4



TR 8533

lhe periodicity of Z(n) means that it only need be computed for one period,

namely 0 S n < N - 1. The absence of limits on the sum in (10) means that

it goes from k L-= to +-, However, since z(k), z(k t N), z(k t 2N),

... all receive the same weight in (10), regardless of the value of n, the

values of {z(kil can be "collapsed" according to

jz(k + N) for 0 _ k < N - 1

{ z otherwise

and (10) becomes identically

N-1
Z(n) - _ exp(-i2wkn/N) 1(k) for all n (12)

k-0

For N highly composite, FFT routines can be employed for efficient evaluation
of (12) for 0 < n E N - 1. The manipulation of (10) into (12) is called

collapsing (or prealiasing), and the operation in (11) is modulo N addition.

The nonzero values of (ZkN in (10) can occur anywhere on the k-axis, and

there can be an arbitrary number of them; nevertheless, (12) is an identity

with (10). The value of Z(n) for any n can be obtained immediately from the

FFT output, by looking up the value in location n modulo N.

5
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WAVEFORM CHARACTERIZATION AND RAIE OF VARIATION

The continuous complex waveform of interest is s(t), with

Fsrlar spectrum

S(f) ,. dt exp(-i2wft) s(t) for all f (13)

We presume here that spectrum S(f) is bandlimited, with total extent F Hz;

i.e.,

S(f) - 0 for tfj > F/2 . (14)

Notice in figure 1 that spectrum S(f) is centered at f - 0, without loss of

generality, since waveform s(t) could be multiplied by exp(-i2urf 0 t) to

downshift it by f0 Hz, to any convenient center frequency, as desired.

If we were given a real waveform, we would replace it by its analytic

waverorm or complex envelope, thereby allowing the minimal possible

time-sampling rate that can still exactly represent and recover the complex

waveform. This sampling rate is half that required for sampling the

corresponding real lowpass waveform, without loss of information.

Nevertheless, the decreased sampling rate applied to the complex waveform is

still sufficient to get an alias-free WDF and CAF. (Of course, the samples

are now complex, whereas they were formerly real for the real waveform case.)
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Figure 1. Bandllmited Waveform Spectrum S(f)

ISR)l adI31Obt

-IC0•±.. o~L

A. 2 A

Figure 2. Spectrum 1(f) of Sampled Waveform

7
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SPECIRUM OF SAMPLED WAVEFORM

Waveform s(t) is sampled at time increment a seconds, yielding samples

ýs(ka) for all integer k . (15)

The spectrum of this sampled waveform is defined by means of a Trapezoidal

approximation to defining integral (13):

t(f) A exp(-i2rfak) s(ka)

k

m C dt exp(-i2wft) s(t) a 6(t - kA) "
k

-s(f) 6 6(f" •)" •s(,- ) for all,, (16)
k k

where we used (6)-(9). The approximating spectrum 1(f) has period 1/A in f

and is depicted in figure 2. It will have nonoverlapping clhasing lobes if

i < (1 (17)

This fundamental sampling rate condition will be presumed to be true,

henceforth. In fact, in order to keep the number of samples {s(ka$1 small,

(17) will be presumed to be closely met. It is very important to minimize

the number of samples that must be manipulated, so that the computational

burden in evaluating the WOF is not overwhelming.

Another interpretation of approximation 9(f) is afforded by line 2 of

(16): T(f) is the spectrum (Fourier transform) of the signal s(t) sampled

(multiplied) by the infinite impulse train at spacing A. This alternative

interpretation will also arise later, when we investigate sampling relative

to the WDF and its various two-dimensional transform domains.

8
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Since sampling rate condition (17) is presumed to be met, then spectrum

S(f) in figure 2 can be gated with a rectangular function, and S(f) can be

recovered; i.e.,

S(f) -S(f) rect(fA) foreall f . (18)

Therafore, the time waveform s(t) can also be recovered exactly, for all t,

by means of inverse transform (5):

s(t) - 3 df exp(i2wft) 9(f) rect(fA)

- sinc(l) (19)

However, since from line 2 of (16), product waveform

1(t) - s(t) a •6(t - ka) - A 2 s(ka) 6(t - kA) (20)

k k

then (19) becomes

s(t) 2 •s(ka) sinc(I - k) for all t , (21)

k

which is the standard interpolation formula for a bandlimited waveform.

It should be pointed out here that (21) is not an attractive

computational procedure, and that an excellent alternative is available.

Namely, from (16), compute from the available samples,

S(f) - a exp(-12wfak) s(ka) for I < (22)

k

and then use the top line of (19) to recover waveform

9

.... ... .. . .. . . .. .. . . . .. .... .. - - - - -. .. ..
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1
2A

s(t) * df exp(12wft) 3(f) for all t . (23)

24

The reason this gating procedure is attractive is that (22) and (23) can both

be done by FFT procedures.* Also, this seemingly trivial sidelight will

reoccur in WOF and CAF reconstruction, where it will have a significant

impact.

Notice that we have not defined a discrete spectrum, per se. Rather, we

have concentrated on getting an• approximation 9(f) to the original continuous

spectrum S(f), both defined for all f. If sampling condition (17) is met)

a < I/F, the approximation affords the possibility of exact recovery of S(f)

at any f. This philosophy, namely avoiding arbitrary definitions of discrete

functions, in favor of direct approximations to the desired continuous

functions, is pursued throughout this report. It is believed that this

clarifies the fundamental limitations and processing that must be performed

in order to achieve the desired quantities. Finally, after demonstrating

the viability of this approach, in order to reduce the mathematical equations

to practical calculations, we discretize the time and/or frequency arguments

of the approximations, as appropriate, and manipulate the equations into

attractive FFT forms. We end up, of course, with discrete data processing

forms that are suitable for efficient computer realization, but the

*Actually, termination of the sum in (22) at finite k limits will yield an
approximation to t(f); the error can be controlled to any desired degree by
taking enough terms. Also, the integral in (23) will have to be
approximated, say, by the Trapezoidal rule; the attendant time-aliasing can
be minimized by choosing the frequency increment small enough. These details
will be investigated later.

10
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discretization in time/frequency is deferred to the latest possible

location, since it is not fundamental to the ideas of controlling or

eliminating allasing.

The sampling increment a will not be set equal to 1 in this report, for

several reasons. It is easier to keep track of dimensions, and dimensional

checks on the equations'are accomplished more readily. It is also easier to

obtain physical interpretation of time instants and increments, as well as

frequency limits and bandwidths. Finally, it will be seen to eliminate

confusion and ambiguity as to precisely where time and frequency samples of

the temporal correlation function, WOF, and CAF are being taken; the

importance of this last point can not be overemphasized.

EXAMPLES

It is very informative at this point to consider a couple of continuous

waveforms and their corresponding WDFs, in terms of their rates of variation.

Consider first, spectrum

Cl/P for jrj <Ff2
.S(f) F 1 rect(f) L , (24)

L0 otherwise

for which the waveform is

s(t) - sinc(Ft) s-n(,Ft) for all t (25)= Ft

The corresponding WOF, at time t and frequency f, is [9, (10)]

11
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W(t,f) f dT exp(-i2nfT) s(t + 1) s (t T

fdv exp(i2itut) S(f +. X) S*(f v )
jinr2irFttl - 2 IfI/F)l for If I 'C

wF2t f

LoforIf) 2for ali tSfo r jfj > E

2-1 2 .fsinc [2Ft(l - 21L-)] rect4i) .(25)

Then, for instance, the slice of the WOF at zero frequency,

W(t,O) I sinc(2Ft) , (27)

varies ~JWJ as fast as waveform s(t) in (25). Therefore, although sampling

s(t) in (25) with time increment a < 1/F is sufficient to reconstruct s(t),

we need a time increment half as large in order to adequately sample slice

(27) of the WDF at f - 0. In fact, W(t,f) In (26) varies faster with t then

s(t) does, whenever 1f1 < F/4.

This example points out that the WOF must be computed ~j~jj as finely as

the waveform samples, lest important information about the energy

distribution of s(t) in t,f space be lost. In fact, if (27) were computed

at time points

tn - (n + j for all n (28)

12
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which have time increment At I/F, then the WDF values obtained would be

W n + 1 ) I , 0) sinc(2n + 1) -0 for all n ,(29)

We would be led to believe from samples (29) that there is no energy along

the f - 0 line in t,f space, whereas continuous version (27) indicates a

considerable contribution.

A second example is

s(t) - *xp - t2)262 /

S(f) * y"27 a eXp(-21 262 f2 ) , (30)

for which the WDF is

W(t,f) 2Vy'"o exp( 1:2 - 4 /202f2) (31)

This WOF varies faster with t than s(t) does, and faster with f than S(f)

does. In fact, the rates of variation of W(t,f) and IS(t)12 are the same

with t, while those of W(t,f) and IS(f)m. 2 are the same in f.

Both of the examples above illustrate the need to compute the WDF at

finer increments than are adequate for the time waveform or spectrum.

However, this does not mean that the time waveform need be sampled more

frequently than requirement (17). Rate (17) is fine for sampling waveform

s(t), but the corresponding WDF can and must then be computed at finer

increments.

13
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TWO-DIMENSIONAL CONTINUOUS FUNCIIONS

For a continuous waveform s(t) with spectrum S(f), there are four useful

two-dimensional characterizations. The first is the continuous temporal

correlation function (TCF)

R(t,T) - s(t + 3) s*(t - for all t,v . (32)

Variable t is absolute time in seconds, while T is relative time or time

separation. The corresponding Wigner distribution function (WOF) is a

Fourier transform on t:

W(t,f) - f dr exp(--12,fr) R(t,T) for all tf . (33)

The alternative Fourier transform on t yields the complex ambiguity function

(CAF):

X(f,T) f dr exp(-i2fvt) R(t,i) for all v,. (34)

Functions W and x are two-dimensional Fourier transforms of each other.

Finally, completing both routes (by t or by t), we have the spectral

correlation function (SCF) as another Fourier transform, according to

several equivalent forms

14
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A(u,f) fdt exp(-i2.fut) W(t,f)

fdT exp(-i2,vf0) x(v,r)

ST dt d? exp(-12wvt - 12irf) R(t,i)

l S(f + 2) S (f - -) for all v,f . (35)

rhis last relation in terms of the spectrum S(f) of waveform s(t) will turn

out to be extremely important and useful. It also enables interpretation of

f as absolute frequency in Hz, while v is relative frequency or frequency

separation.

The names for the TCF and SCF have been drawn from the similarity of

their forms in (32) and (35), respectively, to correlation operations. The

latter name is also used in [10, (5)-(7)] for a similar quantity.

Recalling the bandlimited character of S(f) in (14) and figure 1, we see

that SCF A(u,f) in (35) can be nonzero only when

jf t YJ (36)

This region in the two-frequency domain (u,f plane) is depicted in figure

3. It is a diamond-shaped region centered at the origin of the v,f plane.

Outside this diamond, SCF A(vf) is identically zero. Thus, a bandlimited

spectrum S(f) is reflected in the v,f domain as a diamond-limited SCF A(u,f).

15
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Since (35) can be inverted to give
W -f)du exP(12wvt) A(u,f) ,

X( ,•- f df exp(12wf%) A(u,f) , (37)

it follows from figure 3 that

W(tf) N 0 for f >F/2

x(u-T) a 0 for Jul > F . (38)

Thus the WDF and CAF are bandlimited in their respective frequency variables,

These properties will be useful later when we study the effects of allasing

in the various domains. More generally, the extents and rates of variation

of the TCF, WDF, CAF, and SCF are summarized in appendix A.

The following symmetry properties on the TCF and SCF reduce computational

effort by a factor of two:

R(t,-It) R R(t.,r),

A(-v.,f) A A( ,f)

These follow Immediately from (32) and (35), respectively.

Figure 3. Extent of Spectral Correlation Function A(u,f)

16
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TWO-DIMENSIONAL FUNCTIONS FOR DISCRETE-TIME SAMPLES

The available data samples of waveform s(t) are, as given ii k15),

{s(ka) for integer k

SAMPLED TEMPORAL CORRELATION FUNCTION

From these values, the totality of information, that can be computed

regarding the continuous TCF R(t,i) in (32), are the JLg sets of discrete

values

R(mA,2qA) - s(ma + qA) s*(ma - qa) (3ga)

and for integers
m and q.

R ((m + 1)A, (2q + I)A) - s(ma + qa + A) s (ma - qa) (39b)

Thus both the t and r variables in R(t,r) are discretized, as indicated

in figure 4. However, observe that the available information is

intersoersed in the t,T plane. Thus, for fixed t, the separation in

available v values is 2A, not A, whether t/A is integer or half-integer.

Similarly, for fixed T, the separation in available t values is A, not

A/2, whether T/A is an even or odd integer. This lack of intermediate

values in both slices is what has led (in the past) to incomplete processing

of the available information. What is needed to solve the aliasing problem

is a combination of jll the interspersed information in figure 4 into a

single unified two-dimensional description. That solution will be found to

reside in the SCF domain, ,,f.

17
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* -' 0 0

Figure 4. Available Values of TCF R(tT)

APPROXIMATE WIGNER DISTRIBUTION FUNCTION

Guided by definition (33), we adopt the following Trapezoidal

approximation to the continuous WDF W(t,f) at time t - ma, m integer:

Wa (ma,f) = 24 exp(-12fff2qa) R(ma,2qA) for all f . (40)
q

Subscript a on Wa denotes that it is only an approximation to the true

continuous W. Notice that the T increment in (40) is 2A, as it must be,

according to (39a) and figure 4; we are taking a vertical slice at t - ma in

figure 4. The approximation in (40) is always real. It utilizes only the

upper line of information available in (39). Notice also that this function

is defined for all f.

However, there is an addjtional approximation to W(t,f) available at

time t (m + ½)a , by use of the bottom line of (39); namely, guided againte2

18I
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by definition (33), we have Trapezoidal approximation

Warm +½)a,ft_24 exp[-i2))f(2q + l)A] R m + )A, (2q + l)a) for all f
q

(41)

m is still an integer. Again, the r increment is 2a, but it is shifted by

A, as (39b) and figure 4 dictate. We are now taking a vertical slice at

t - (m + 1)a in figure 4; this is in keeping with the philosophy developed

earlier in (24)-(31). Approximation (41) is also real.

Equations (40) and (41) can be developed into some informative forms;

from (40) and (9), approximation

Wa (mAf) - fdr exp(-i2wfT) R(mA,i) 2A4 6(1 - 2qA)

q

f
- W(mA,f) Q 6(f - 2A)

q

= W(ma, - A) Fur all f .(42)2A

Similarly,(41) yields

Wa m + -6dT exp(-i2wfT) R m + ½)A, ) 4 A S(, - 2qA - A)

q

W- m + b)A,•6 2(_l)q 4(f- _-_q)-

q

"•,(-)q W m +' 1A f - for all f . (43)
q

19
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lhe (-1 )q factor is due to the time delay of A seconds in the impulse

train; more generally, for delay Too

fd-r exp(-i 2¶fT) 24 8 6(T - 2qh - 0)

q

q

-•exp(-iwq r /A) 6(f - 26 (44)

q

The two relations, (42) and (43), are equivalent to those given in

[4, (9)] and [6, (14)]. Observe that the aliasing lobes are separated by

only (2a)-1 in the frequency domain, not 1/6 as was the case for the signal

aliasing lobes in figure 2. These approximations, Wa, are illustrated in

figure 5, for two adjacent time instants at ma and (m + 1)a . We have used

property (38) in drawing figure 5.

In order for either approximation, by itself, to be free of aliasing, we

would need

F J _.- L i.e., a < (45)
S2A 2 2F

This relation, obtained directly from both plots in figure 5, is the usual

one quoted regarding an alias-free WDF. It is seen to require a sampling

rate twice as fine as (17). If we satisfy (17), but not (45), then the

approximations in figui-e 5 are significantly aliased.

The case where s(t) is a real waveform is treated in appendix A.
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The two approximations, (40) ana (41), use all the available informa~tion

(39) about the TCF R(t,T) in the t,r plane. However, we cannot average

these two WDF approximations, in hopes of cancelling out the close-in lobes

centered at f - t(2a)", because the two times, ma and (m * 1)a, are not

identical. (This timing observation is one reason for keeping a itself in

all the equations, rather than setLing a equai to 1 and losing track of the

meaning of m vs. m ÷ *). Nor can we discard either one of approximationsmeain of appro.immtion

(42) and (43), especially if criterion a < I/F is closely met; the examples

in (24)-(31) amply demonstrate the rapid variation of the WOF with time t.

We see from (40) and (41) that approximations to the continuous WDP are

available at discrete time values with separation at . A/2 and at a

continuum of f values. Thus we have succeeded in eliminating the discrete

nature of one of the two initial time variables in the 1CF, namely T.

22
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APPROXIMATE SPECIRAL CORRFLATION FUNCTION VIA WUF

Guided by line 1 of definition (35), we adopt the following Trapezoidal

approximation to the original SCF A(v,f):

n

eve exp(-12wv~ 2A W nlf for all uvf (46)

Notice that this function is defined on a continuum in v,f space. The

superscript w on approximation A a denotes the fact that we have used the

WDF route to get into the v,f plane. The increment on t in (46) is At - &/2,

in keeping with the available WDF values in (40) and (41) together. This

approximation satisfies the symmetry rule, A - A*

for the original SCF A(v,f).

We let n - 2m in the first sum in (46), and let n a 2m + 1 in the second

sum. There follows, upon use of (42) and (43),

AM ,f) -A : exp(-2- Am)Wa(maf) +
m

m

+ A exp(-l2rua~m+1) W. (m, + 6% f) 9

q m

+1(-1 )ql ,A exp(-i2iua(m ½) W. - -q(4))

q m

23



TR 8533

But

aexp(-1i2.rvAM) W(MAXf)

m

dt ep(-i2wvt) W(t,fl) A4[ d(t -mA)

m

aA(v,f') Ž ~ M)-
m

m

while

a2 exp[-12wrva(m + W~) Wm + ~Af

m

fdt exp(-i 2wit) W~t, f' a aj (t 2 m
m

*A(ii~f') .4() m (v-)
m

2(ImA(u - Mf)(49)

rn

24



TR 8533

The use of these two relations in (47) yields the approximate SCF

-~)Vf 1 ~ , f - ) 1- (50a)
q m

qq m
21~ 2A~ (50b)

q m

ý;A( v - 81, f -for all i,,f .(51)

q+m even

We now have a function defined on a two-dimensional continuum in the

two-frequency domain, u,f.

At this point, the reason for pursuing the use of alU the available

information becomes obvious. All the close-in lobes that caused problems

have precisely cancelled in the SCF domain! Figure 6 depicts the regions in

the u,f plane where approximation A•w)(V,f) in (51) can be nonzero; see

also figure 3.

The SCF term in (50a) corresponds to use of only the information about

the TCF given in (39a), within a factor of 2, whereas (50b) arises from

(39b). Term (50a) by itself contains all the aliasing lobes centered at

Smf a -- , with separations A - 1/A, A - (2A) 1; condition (17) is thenA' 2A Af
insufficient to prevent overlap, and (50a) is seriously aliased. A similar

situation exists for (50b) by itself. It is only the average of these two

pieces of information that succeeds in elimination of the troublesome

close-in aliasing lobes in v,f space. And it is only in this last domain,

where the functions are continuous in both variables, that this average can

be conducted.
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There will be no overlap of any ot the remaining aliasing lobes in

figure 6 if we choose, as in (17),

A < (52)F'

Notice that we do M1 have to require a < (2F)" 1 , in order to avoid the

overlap. Furthermore, if we define the diamond gating function (see

figure 6)

D(vf) (53)
0O otherwise

then we can recover exactly the original SCF from approximation (51)

according to

A W)(v,f) D(u,f) - A(v,f) for all v,f , (54)

lut recovery of A(v,f) is tantamount to recovering the exact continuous WDF,

since

W(tf) S •dv exp(12wvt) A(w,f) for all t,f . (55)

Thus, criterion (52) is sufficient to guarantee the possibility of getting

an alias-free WOF from discrete-time data.

Additional interpretations of (54) and a simple method of computing

approximation A•w)(u,f) are addressed in the next section, after we

have also looked at the route to the v,f plane by way of the CAF.
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APPROXIMAlT CUMPLEX AMBIGUITY FUNCILUN

Based on definition (34), we utilize the Trapezoidal approximation to

the continuous CAF X(u,T) at delay t 2qa, q integer:

xa(v,2qa) =- a exp(-12wuArm) R(mA,2qA) -
m

$dt exp(-12ivt) R(t,2qA) 4 6(t - mA) -

= x(v,2qA) -

m

X x -M, 2qA) for all v (56)

m

Notice that the t increment is A, as it must be, according to (39a) and

figure 4; we are taking a horizontal slice at i - 2qA in figure 4.

However, there is an additional approximation available to the CAF, at

delay T - (2q + l)A; again, referring to (34),

Xa(v,(2q + l)A) - A exp(-12irua(m + 1)] Ra(m + 1)A,(2q i l)A)

Sfdt exp(-i21rut) R (t,(2q + l) a 6(t -(in + ) =

K(vj.(2q +. 1)A) v 5(-I)m 6(v - M

B(. 1)m X (v (2q + 1)t) for all v (57)
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The t increment is again 6,. but it is shifted by 4/2, in keeping with (39b)

and figure 4. We are now taking a horizontal slice at T - (2q * i)A in

figure 4. The (-l)m factor is explained by (44).

The aliasing lobes in (56) and (57) are separated only by A, - 1/A and

will overlap orn the v axis unless a < (2F)' ; see (38) and figure 7. Thus,

the approximate CAF, Xa(Uu,nA) for n integer, suffers overlap due to

aliasing, just as the WDF, Wa(1 a, f) for n integer, does; elimination

of overlap is achieved only if the stringent requirement a < (2F)- 1 is met.

Furthermore, again, we cannot directly average the two results in figure 7,

in hopes of canceling the close-in lobes centered at i=t 1/A, because the

two delays, 2qA and (2q + I)A, are not identical.

Equations (56) and (57), together, illustrate that approximations to the

continuous CAF are available at discrete delay values with separation A - A

and at a continuum of v values. Now we have succeeded in eliminating the

discrete nature of the other of the two initial time variables in the TCF,

namely t. The remaining Fourier transform into the SCF domain will

eliminate the other discrete variable.
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Figure 7. CAF Approximations
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APPROXIMAIE SPECIRAL CORRLLA1ION FUNCTION VIA CAF

Guided by line 2 of definition (35), we obtain the following

alproximation to the original SCF A(v,f):

A(C)(V,f) . a exp(-12ifna) x (u,na) -
a a

n

+ 2E exp(-i21rfna) xa(v'na) for all u,f (58)

fn 5e-'v n n oddl

The superscript c on approximation Aa denotes that we are obtaining this

result by way of the CAF. The increment on T in (58) is a = A, in

keeping with the available CAF values in (56) and (57) together.

Let n - 2q in the first sum in (58), and let n - 2q + 1 in the second

sum. There follows, upon use of (56) and (51),

A c)(v,f) - a exp(-12wfa2q) X (v,2qA) +

q

+ A exp[-12irfa(2q + 1)] Xa(v,(2q + 1)A) -

q

mZa exp(-i2wfa2q) Xv- M, 2q) +.

+ 2(...)m a' exp( i2wfA(2q + 1)] X v- M, (2q + 1)). (59)

a 4)

m q
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But

A• exp(-12,WfA2q) x(v',2qA)
q

* d exp( A2wf r x(V',.) A 2qA)

q

f
-A~~v'of)((f • C- .-1)

q

S A( - ) , (60)
q

while

a exp[-12irfa(2q + 1)J x.(u',(2q + 1)A)
q

drexp( -i2.f T) K(v -r) A 6(c- (2q I l)A)
q

A ~ ~ ~ S f -
- Alv',f) *•(-1)q ,6(- •-

q

- ½ (_l)q A(v',f - (61).

q

The use of these two relations in (59) yields the approximate SCF
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A C)(Ct) = •'f - ). f
m q

+ (-I)m,+q A(v - - 2A)
m q

- 3 A(v f for all v,f .(62)

m q 2

m+q even

But this result is identical to the approximate SCF A(w)(,,f) givena
in (51) and figure 6. That is, we obtain the same continuous approximation

in the u,f domain, whether we approach it via the WDF or the CAF. This

apparently fortuitous result is due to the fact that we used al_, the

available information about the TCF when we started with (39), and kept all

of it in passage through the WOF or CAF domains.

Figure 6 is again applicable, and we now see that we can drop

superscripts w and c from (51) and (62), respectively, since there is only

one approximation in the SCF domain. (The comments following (51) are also

directly applicable here.)

A rigorous proof of the equality of the two approximations available for

the SCF is given in appendix B. It utilizes an impulsive sampling approach,

similar to (9) but in two dimensions, and can be considered as an alternative

to the approximation approach developed in this section. Of tourse, the end

result for the SUF in the u,f domain is again (51) or (62) or figure 6.
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SUMMARY STATUS IN ALL FOUR DOMAINS

The results for the approximations to the TCF, WDF, CAF, and SCF are

sketched in figure 8. These plots are a rondensation of the exact

analytical results given by (39), (42) 4 (43), (56) t (57), and (51) c (62),

respectively. For example, the approximate WDF in the lower left of figure 8

is available only alonA t•' slices where t n hA/2, n integer. Along these

slices, the aliasi, lobes (in frequency) alternate in polarity if n is odd,

but remain positive for n even. (Positive lobes are drawn toward the right

side in the figure).

Horizuntal movement from one diagram to another in figure 8 is

accomplished by a Fourier transform from t to v (or vice versa).

Vertical movement is according to a Fourier pair relating T and f.

Finally, the diagonal connection between Ra and A a, or between Wa and

Xa, is by means of a double Fourier transform.
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RECOVERY OF ORIGINAL CON1INUOUS TWO-DIMENSIONAL FUNCUIONS

We have seen, by means of (52)-(54) and figure 6, that the original SCF

can be recovered from the approximate SCF

A (U'f) A(u - ,f - -2) for all v,f ,(63)

q m
q+m even

by means of the diamond gating function D(u,f) in (53), provided that

a < I/F. We have used (51) and (62) here, and dropped the superscripts in

accordance with the discussion following (62). This means that we have the

possibility of evaluating the original continuous TCF R(t,T), WOF W(t,f),

and CAF x(v,%) at any argument values we please.

SIMPLIFICATION OF SCF Aa(vf)

It would be an extremely tedious task to evaluate the approximate SCF

A directly by its definition (46) coupled with (40) and (41), which, ina

turn, are based upon starting information (39). In fact, there is a

startingly simple way of computing Aa'

Recall from (16) that spectrum

9(f) - a 2 exp(-i2wfak) s(kA)

k

S(f - for all f .(64)

k
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Therefore

3( +. Y-) 3*(f - P- -2ý S~f+ S*(f- -

k t

-2,2 A( .- LL 0 , - ,fr all kf , (65)

k L

whero we used (35). Now let m = k - k. and q = k + 1; then

2 k 2 -m - t meaning that m t q must always be even. Therefore,2 ' 2
(65) can be expressed as

ý + Y) 9(f - Y) A~ - M.f - -1) for all v,f . (66)
q m

q+m even

But (66) is Identical with (63)! Thus we have the compact result for the

approximate SCF

Aa(,,f) -§(f + I) 3*(f -1 for all ,,f , (67)

where

A(f) - exp(-12wfak) s(kA) for all f , (68)

k

in terms of the original time samples (s(ka)1

It is convenient at this point to define, for all f, the function

9(f) - 9(f) rect(Af) 3 , (69)

0 otherwise
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which can be computed directly from the samples {s(kA). Then since

a < I/F, reference to figure 2 and (18) reveals that

9(f) - S(f) for all f . (70)

The only reason for distinguishing between T and S is that we think of T as

being computed directly from samples {s(ka)l via (69), whereas we think of S

as being computed from s(t) via Fourier transform (13). Strictly, since S(f)

is bandlimited to t F/2, T(f) in (69) only needs to be computed in that

somewhat smaller range of f.

At this point, we refer back to (52)-(54) and figure 6 to find that

A(v,f) m Aa(Vgf) O(v,f) - 9(f +f - )* for all v,f , (71)

since only the origin lobe in figure 6 can contribute, and there is no

overlap. Thus we have a very direct way of recovering the original SCF from

the time data samples: compute T(f) from (69), and then A(u,f) from (71).

All these results are predicated on sampling rate condition a < 1/F; they do

not require A < (2F)"1.

If we substitute (70) in (71), we hive original definition (35). Thus we

have come full circle on the SCF, returliing with an obvious relation. This

indicates that a shortcut could have boin taken with regard to getting the

key result (67). We have pursued the longer route because it indicates what

the complete set of fundamental proces•ing equations are, and it clarifies a

number of points that have been under :ontention in the literature.
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RECOVERY OF ORIGINAL WDF AND CAF

From (37) and (71), we obtain the original continuous WDF as

W(t,f) - Jdv exp(12irut) 9(f + Y) S*(f - Y) for all tf , (72)

where 1(f) is given by (69) in terms of samples {s(ka)j . The truncation of

9(f) at f - t (2A)" in (69) is what prevents all the distant sidelobes of

A a (vf) from contributing. We could hardly have expected a simpler result.

From (37) and (71), we also obtain the original CAF according to

x(VT) - $df ,xp(i2rf) S(f + 2) 9*(f - Y) for all v,. (73)

Thus, both the WOF and the CAF can be recovered by single Fourier transforms

of the same product function, but on complementary variables v and f,

respectively.

RECOVERY OF ORIGINAL TCF

Probably the best way to recover the original TCF R(t,T) is by means

of a combination of (32), (5), and (70):

RMt,,) - s(t + 1) s (t - 1) , (74)

with

s(t) - fdf exp(iwft) S(f) . (75)

All the above procedures employ 1(f) and a Fourier transform in some

fashion. The quantity 3(f) can be computed at any f of interest, directly

from samples fs(kai) , by means of (69).
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DIRECI TIME DOMAIN RECOVERY OF CONIINUOUS WDF

We have given two alternatives for the recovery of continuous time

waveform s(t) from samples js(ka)). They are (21) or (75)d(69). If we

employ the former in the time definition of the original.WDF (line 1 of

(26)), we find, for all t,f,

W(tf) - fdi exp(-i2,wf) s(t + 1) s*(t -)2~ 2

IMA ex *p(-i2iwfa(k - t.)] s(ka) S 4 L)W (t k +jI A.f) . 76
kk

where

sinr2w(l - 2ft) tl f I
It/A 26

W0 (tf) * for all t . (77)

O for Ilf > -1

This result is equivalent to E5, (5)4(6)]. However, as noted there, this

alternative for the WDF is not computationally attractive, although (76) is

certainly alias-free because it is restoring W(t,f) itself, and not some

approximation to it.

As an aside, if the frequency domain version of the WOF is used instead

(line 2 of (26)), and if (21) is i transformed into the frequency

domain, we get directly
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S(f) - 3(f) rect(af) = 5(f) , (78)

in complete agreement with (72).

In the sequel to (62), it was mentioned that an alternative approach

involving impulsive sampling could be used to get various impulsive

two-dimensional functions from samples {s(kA)} . In a similar vein, the

continuous two-dimensional functions can be recovered by direct convolution

(interpolation) in the domain(s) of interest. These alternative forms are

not as numerically useful as the ones presented above, and so are deferred

to appendix C. However, some useful insight Into the inadequacy of some

past attempts at interpolation is gained by this alternative viewpoint, and

the readers attention is directed to those results.

OISCUSSION

In retrospect, (72) and (69) are an obvious result. We know that the

original continuous WOF is given'by (line 2 of (26))

W(t,f) * dv exp(-12wvt) S(f + 1) S*(f - 1) for all t,f. (79)

So if we can get S(f) exactly from samples [s(khi) , in some (Any.) fashion,

we can get W via (79). But, in fact, T(f) in (69) is identically equal to

S(f) for all f, when A < 1/F. Condition A < (2F)"1 is patently unnecessary

and too restrictive. A similar comment holds with regard to the CAF.
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Given samples ý(kAW, the function ý(f) in (69) can be computed at any

,iesired f values of interest. Therefore the product

S + *) -(f >-(80)

required in (72) and (73) can be computed at any w,f values needed, and the

integrals for W(t,f) and x(vT) evaluated very accurately at any

arguments of interest.

lhis is the major difference relative to the TCF R(t,T), (74), which

could only be calculated at interspersed points in the t,T plane from the

available data; see (39) and figure 4. Strictly, waveform s(t) could be

interpolated, and then TCF R(t,i) filled in at the intermediate points of

interest in figure 4. This viable alternative requires just slightly more

calculations that the frequency domain approach given above; we will discuss

and compare both alternatives in a later :ection.

In practice, T(f) will only be calculated at a discrete set of

frequencies, in order to economize on computational effort, We then find

that the product function (80) is available at interspersed points in the

Vf plane in an identical manner to that for TCF R(t,T) in figure 4.

In fact, if T(f) is computed only for f/Af i integer, then (80) is

available only at

fl6f- integer V f even integer (81)

and at

f/Af - odd integer/2 * ut/A f odd integer , (82)

Just as this type of interspersed sampling required a finer sampling interval

in the time domain (see figure 5 and (45)), so also is a finer increment

required here in the frequency domain. Namely, w.e must heve

42



IR 8533

< -(83)
f 21

in order to avoid aliasing in the t domain of the reconstructed WOF via

Fourier transform (72). The same requirement holds for allasing control in

the T domain of the reconstructed CAF via (73). Here, T is the overall

effective duration of waveform s(t):

Is(t)1 * 0 for Itl > T/2 (84)

See figure 9. (The waveform can be centered at t 0 without loss of

generality, merely by time delaying it.) However, there is a very convenient

and efficient way to meet requirement (83), as will be shown shortly, whereas

requirement (45), A < (2F)", is very unattractive, at least through direct

sampling of time domain waveForm s(t).

Since the total extent of the spectrum S(f) is F Hz (see (14) and

figure 1), wavefnrm s(t) cannot be strictly time-limited. However, we

assume that a finite T value can be found for figure 9 such that

approximation (84) is a good one. Strictly, (84) should read

Ist. 1 for Itl > T/2 , (85)
maxjs(t)l

Figure 9. Waveform s(t)
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DISCRETE PROCESSING IN FREQUENCY DOMAIN

Thus far, we have not discretized in the frequency domain; both v and f

have been allowed to take on continuous values. So we have, from (69),

a(f)- exp(-12wfAk) s(kA) for Ifi < _A ' (86)
k

Now, suppose that we only evaluate 1(f) at a set of discrete frequencies,

according to

N A , exp(-12,nk/N) s(kA) for mI < (87)
k

Since the sum on the right-hand side of (87) has period N in n, we can

evaluate it quickly via a collapsed N-point FFT; see (10)-(12). The

negative n values desired in (87) are easily accommodated by means of a

modulo N look-up in the FFI output,

EVALUATION OF WDF

The increment in argument f of 3(f) in (87) is

Af .1. (88)

In order to use these results in approximating integral (72) for the WDF,

W(t,f) - fdv exp(i2wut) 9(f + 1) §*(f - 1, (89)

we need to have the increment in v satisfy (due to the v/2 arguments)
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1 1 2
Ni.e., 2 = (90)

So if we limit v in (89) to the values , one possible TrapezoidalNA

approximation to W is

qJ(t f) -1 exp( i2,r 2U t)§f _-A)_ ( - -L) for all t,f . (91)

This function is defined on a continuum In time,frequency space. But this

can be developed according to

P(t,f) * du exp(12wrvt) §(f + Y-) §*(f )N, ('-2 2 NANA~

t
W(t,f)rb 6(t- 92 -

(t- I f) for all tf ,(92)22

where we used (72).

Since waveform s(t) is approximately limited to Itl < T/2 (see (84) and

figure 9), then WDF W(t,f) is also approximately limited to Iti < T/2, as

may be seen from line 1 of (26). The approximation (92) then appears as In

figure 10.

S_ t

Figure 10. Time-Aliased WDF
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In order that approximate WDF W not suffer significant overlap in time,

we see that we need

I < N I i.e., N >-T (93)
2 2 2 AI

The FFT size, N, in (87) must be at least twice as large as the number of

samples, T/A, taken of waveform s(t). Recalling (88), this inequality

becomes

(94)

"f NA 2T

consistent with (83), as predicted. Thus, approximation ;(t,f) is an

extremely good approximation to W(t,f) for Itl < T/2 if FFT size N satisfies

(93). The goodness of % depends critically on the degree of satisfaction of

(85).

More generally, we could limit the v values in (89) to

uV a NA ' U'o arbitrary (a -a ) , (95)

getting alternative approximation

Wa (t~f) fdu1 exp(12irtv) I(f + Y) 9(f V-) -12 d(V - V )

SI
t

aW(t~f)S[X(2r1)6( 
- IA~ a

"W(t - L , f) exp(iivvoNAt) for all tf , (96)

The plot for I a (tf)I is identical to that of I;(t,f)l in figure 10, since

the magnitude of phase factor exp(iu Nat) is 1 for all %. The main lobe,

t - 0, is unaffected by the choice of v . So criterion (93) is again

sufficient to avoid time-aliesing in V, regardless of shift u
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DISCREII/AlION IN 1MF. AND FREQUENCY

For convenience, we therefore return to W in (91) and get, in particular,

the values

t 2 exp(12w t) (n + (_ ) for all t , (97)

where we must choose frequency f NA , in order to use the avalable

samples of S in (87). We now further choose time

t MA (98)•2 M 9B

and get the approximation in the form

.; exp(12wmt/MNA((pn ) . (99)

The reason for this choice of t values is that this sum can be accomplished

as a collapsed M-point FFT as described in (10)-(12). The range of values

that must be covered is

.LIA.N<T i e., m T M
I ieIml < 1 (100)2 M 2' A

and

Inl < E i.e., Ini < FA 2 (101)Na 2 2 . 1i

Coincidentally, this identical procedure above has already been derived

by the au.Ithor in L9, (A-13)1(A-14)]. However, it was done, at that time, to

generate slices in time of the WOF, without realizing that the procedure h;so

had an alias-elimination feature. Requirement (93) was "9, (A-5)j(A-6)L.
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INCREMENTS IN t AND '

The increments in t and f in approximation V(t,f) in (99) are

At and Af (102)"t 2 M f N& 12

Since the original WOF is given by

W(tf) - fdr exp(-i21rfT) R(t,i) (103)

and the effective extent of R(t,i) in 7 is ±T for thv waveform s(t)

satisfying (84), then we must require

A < 2T I e N > (104)f2T ' '"

in order to track the variation of W(t,f) in f. (See appendix A.) However,

this was a condition already encountered in (93).

Furthermore, since we have the alternative Fourier transform

W(t,f) - du exp(12irvt) A(u,f) , (105)

and the extent of A(u,f) in v is ±F. then we must also have

t 2F i.e., "' F N' (106)

in order to track W(t,f) variations in t. Now if we choose M smaller than N,

say M - N/2, then we obtain condition a < (2F)"I, Out this is a finer time

sampling increment than required. Also (102) gives A t a, which does not

track W(t,f) adequately in time; see (24)-(31). Conversely, if we choose M

larger than N, say M - 2N, then we get A < 2/F, which is already accommodated

by the earlier requirement
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A < 1/F. And at a/4, which is overly fine In time. So. in nrder to

minimize the range of m values needed for investigation, we choose

M-N. (107)

Notice that the time Increment At in.,(102) for V(t,f) is then At 4/2,

not the 6 that was sufficient for sampling s(t). This is consistent with

the fact that W(t,f) can be sharper in t than s(t).

SUMMARY OF WOF EQUATIONS

Here we summarize the major assumptions and requirements and list the

major equations by whilch the approximate WDF ' can be computed.

Assumptions:

S(f) 0 for Iii > F/2

Is(t)I 0 for Itl > T/2 . (108)

This is no loss of generality, since the waveform can be time delayed and

frequency shifted as desired.

Requirements:

A<C
F'

N > (> 2TF) (109)A

Equations:

Al exp(-i2ink/N) s(ka) for mnl <

k 2

- . (110)

0 otherwise

42



TR 8533

-2 exp(12,Tm%/N) -(n +a zln
2 NA' NA N(A- NAn÷.

for Iml <I In < K FA (111)

Operation (110) can be accomplished by a single N-point FFT with

collapsing, while (111) requires an N-point FFT for each n value of interest.

The latter N-point FFT (for a given n) will sweep out N values of integer m;

this will cover a total time range of N A > T , as desired. The total number

of n (frequency) values to be searched is NFA, Values of ; for negative

values of m are available in location m modulo N of the FFT output,

For the most advantageous choices of

a -. I N 2TF , (112)F'

we have ranges

Iml < TF , nl < TF

EVALUATION OF CAF

The equations for calculation of the CAF, from discretized frequency

samples of 3(f), are very similar to those given above for the WDF.

Accordingly, they are deferred to appendix 0.
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INTERPOLATION OF TIME WAVEFORM

It was mentioned in the sequel to (80) that available data samples

(s(kA)j could be interpolated in timo, to fill in tne vacant spot4 of TCF

R(t,T) in figure 4. One procodure to accomplish this is by direct use of

sinc-function interpolation in (21). However, a more efficient procedure is

by use of PFTs.

From (22), we can get samples of the approximate spectrum according to

)- A~ exp(-12wmk/M) s(ka) for Iml j_. (113)
k

which can be accomplished by an M-point FFT. the frequency increment is

a (MA)-1. The original continuous time waveform is

s(t) f df exp(i2irft) S(f) w

(2A)1

df exp(12wft) ý(f) -

M/2

MA MA M
m--M/2

3 •(t) for all t . (114)
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where we have utilized 'the fact that A < 1i/F. (The tic mark on the summation

symbol indicates that the summand values at m - 0M/2 must be scaled by 1/2,)

iut approximation I(t) can be developed in the form

_1
26 M/2

I(t)- df exp(12vft) I(f) j 6(f •-

S~mm-M/2

- df exp(l2irft) S(f) •6 'f MA•)

m

st) _ 6(t - mMA) m s(t - mMA) for all t . (115)

m m

This aliased function is illustrated in figure 11.

L"

-j 0

Figure 11. Time-Aliased Wavefom S(t)
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In order to avoid time overlap in figure 11, we must have

M > (> TF) . (116)

If this FFT size requirement for (113) is met, then figure 11 reveals that

t(t) ; s(t) for Iti < (117)

that is, we can expect that 1(t) is a good approximation to s(t).

In particular, if we want to interpolate samples {s(kA)$ by a factor of

2, we have, from (117) and (114),

M/2

This can be done by a 2M-point FFT with zero-fill, and1fl(Mai are made

available by the M-point FFT in (113). The two roquirements that

must be met are

A < 2M > (> 2TF) (119)F'

This is the procedure utilized in [8).
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0 ISCUSSION/SUMMARY

We have two alternatives for computing an alias.-free WOF and CAF. The

requirements that must be met are

F N -2M > 2"(120)
F ' A ' A'*(10

The processing equations are summarized below,

TIME DOMAIN APPROACH

16 U) - a exp(-i2,mk/M) s(ka) for Imj < 2, (121)

M/2
exp(i2wmn/N) 3(-M) for Int M

m--M/2

- ,) (122)

0 otherwise

O(MA, A)" exp(-1i2rnt-/N) )•* + A)

for *ml< InI < 2 FA , (123)

In the last equation, we obtain slices of the WOF in frequency (n) at fixed

time (m). (This result is in essential agreement with [7, (77) and (74)];

however, we are not restricted here to T a MA.)

54



TR 8533

FREQUENCY DOMAIN APPROACH

a 2 xp( -i2fiiok/N) s(k4) for Jn < 2
k

() (124)

o otherwise

for Im) < ,< FIn A . (125)

Here, we obtain sli~es of the WOF in time (m) at fixed frequency (n). (This

result is in esse~itial agreement with [7, (81)]; however, we are not

restricted here to 2T u N.)

COMPARISON

Since wiaveform s(t) 0 for It > T/2, the sum on k in (121) can be

cofie 2o 4k while the sum on k 4In (124) can similarly be

confinrpd to Iki <A T 4<

"The time domain approach requires cne M-poirt (M w N/2) FFI, one N-polnt

FF7 , and then an N-point FFT for each time index m of interest. Thr

frequency domain approach requires one N-point FFT and then an N-point FF1

for each frequency index n of interest. Thus, the time domain approach

requires one additional M w 2 - point FFT, which is a negligible difference,

compared with the multiple FFTs that must be performed for (123) or (125).

The major difference between the two approaches appears to be whether one

wants slices in frequency, or slices in time, of the WDF.
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It should be emphasized that the procedure here reconstructs the

original WOF of the continuous waveform s(t), at any time,frequency (t,f)

arguments of interest, from the samples fs(ka) . There is no need to define

or set up some arbitrary discrete form of the WDF. The discretization of

the t,f arguments of the WOFs is undertaken only A= this reconstruction

procedure has been delineated (via the v,f plane) and the sufficiincy of

sampling requirement a < 1/F established. Of course, this evontual

discretization in time/frequency is necessary in order to reduce the general

procedure to a practical efficient algorithm. A similar set of arguments

applies equally well to the reconstruction of the CAF.

An alternative philosophy, to developing Trapezoidal approximations for

the various two-dimensional functions, is given in appendix B in terms of a

pair of interspersed impulsive trains in the t,T plane. The end result

for the approximate SCF in the v,f plane is shown to be identical to that

obtained earlier.

The connection of this two-dimensional impulse train with direct time

domain sampling of the waveform s(t) is considered in appendix E. Again,

the two approaches, time domain sampling versus t,i domain sampling, are

shown to yield the same result. Finally, the fundamental rules and patterns

relating two-dimensional interspersed infinite sampling trains are displayed

at the end of appendix E.
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APPENDIX A. EXTENTS AND RATES Or VARIA1ION

OF TCF, WOF, CAF, SCF

From (5), we have Fourier pair

s(f) - •dt exp(-12,yft) s*(t),

s(t) - df exp(i2ift) S(f) ; (A-i)

and from figures 1 and 2, we know that if

S(f) - 0 for jfý > F/2 , (A-2)

then samples (#At)) are sufficient for reconstructlon of s(t) if t - 1I/F.

That is, if a spectrum is bandlimited in the frequency domain to total

extent F Hz, samples of the corresponding time function must be taken with

time increment at < 1/F, in order not to lose any significant information.

In a similar vein, the duality of the equations in (A-1) indicates that

if, instead,

S(t) l 0 for jtj > T/2 , (A-3)

then spectrum samples [S(naf)) are sufficient for reconstruction of S(f) if

frequency increment af < I/T.

The general rule, here, is that if a function in one domain is

essentially limited to overall extent E, samples in its Fourier transform

domain must be taken finer than l/E, in order not to lose aity infurination.

This rule will be used frequently below.

A-1
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EXTENIS OF TCF, WOF, CAF, AND SCF

Henceforth, we assume that

S(f)• 0 for Jf( > F/2

and

s(t)z 0 for It > T/2 . (A-4)

Thus, the overall frequency and time extents are approximately F Hz and T

seconds, respectively. It then readily follows from (32)-(38), namely,

.1 ,(t + s(t - , (A-5)

A(Y,f) • S(f + I) S(f - , (A-6)

W(tf) - fdi exp(-12wfi) R(t,i) a (A-?)

S5du exp(12wut) A(v,f) , (A-8)

X(*,T) - dt exp(-12irvt) R(t,T) - (A-9)

S $df exp(12wfT) A(v,f) , (A-10)

that the extents of these functions are as depicted in figure A-1. The solid

curves depict the contour level within which the function is essentially

concentrated. In fact, for Gaussian waveform s(t) - a exp(- A the
2a 2

choices T -, 4a, F - , for example, give these exact results in figure A-i,
Ira

at the exp(-4) - .018 level.
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-� -U

t J)

WEEf�)

t

Figure A-i. Extents of the two-Olmensional Functions
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RAIES OF VARIATION

We now combine the sampling rule deduced under (A-3) with the extents in

figure A-1. From (A-7) and (A-8), we must have sampling increments (i.e.,

spacings of argument values on left-hand side) satisfy

'f "2T

to adeq'uately track WOF .(A-11)

At IC4

From (A-9) and (A-10), we need

v T
to track CAF .(A-12)

By inverting (A-7)-(A-1O), we express

*fdu exp(12,fft) X~v ,v (A-14)

A(v~f) fdt exp(-12wuvt) W(t,f) (A-15)

* di exp(-12wfT) x(v,T) .(A-16)

Therk. follows from (A-l3) and (A-14), that we need

F

to track TCF ,(A-i7)
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while from (A-15) and (A-k6),

< T
to track SCF (A-18)

6f <2-TJ

These last four restrictions are identical to those given in (A-ll) and

(A-12). The total number of samples required to completely describe any one

of the four two-dimensional characterizations is T2 F2 .

SAMPLING RATE FOR REAL WAVEFORM

Requirement (17) on the time sampling increment, A < I/F, for recovery of

the time waveform s(t), is based upon figures 1 and 2 for a complex envelope

waveform s(t). If s(t) were, instead, a real waveform sI(t), the earlier

development covers this case as well, but with a change in notation. The

spectrum S (f) of waveform sl(t) is symmetric about f - 0, as depicted in

figure A-2. F is now the total frequency extent of the positive-frequency

components of sl(t).

We now have frequency limit

Fi m , . E (A-19)
2 c 2

and the stringent requirement (45), for an unaliased WUF, becomes

a < 1 (A-20)2F I 4f c + F

For a narrowband waveform, fc >> F, this requires an unnecessarily high

sampling rate, r.ompared to what would be required for the waveform

A-5
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corresponding to single-sided bandwidth F. Extraction of the complex

envelope (or analytic function) of s 1 (t) would return us to WOF requirement

S< 2F , as in (45). This pre-processing feature is recommended for all real

waveforms. However, we also want to avoid this more stringent WDF

requirement and be subject only to the a < l/F limitation.

I F

Figure A-2. Spectrum of Real Waveform

A-6



TR 8533

APPENDIX B. IMPULSIVE SAMPLING APPROACH

Instead of trying to develop Trapezoidal approximations to the WOF, CAF,

and SCF integrals from the available information about the TCF in (39), we

adopt here the philosophy that continuous TCF R(t,T) has had a pair of

Impulsive trains applied to it, yielding the impulsive approximation

Ri(t,') a•2 R(t,.T) 6(t - mA)• 6(T - 2qA)

q

+~ ~ (m + I)A)~ 6( (2, + 1))

m q

n÷% even

mA2 R ýýr R(At (t - D) 6(-C - a

n t
n+t even

That is, a couple of two-dimensional impulse trains, interspersed in the

t,i plane, have been applied, so as to use all the available information

in (39). This Is ioentical to the result for the TCF of impulsive time

waveform si(t), obtained by multiplying s(t) by a sampling train; see

appendix E.

We now define the corresponding WDF, CAF, and SCF as rigorous Fourier

transforms of (B-1), using the standard foms, for all argument values,
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Wi(tf) - ,d. exp(-i2wfT) R1 (to) ,

, 5 dt exp(-12irut) R1 (tr) I

A1 (u,f) - fdt exp(-t1irut) Wi(t,f)

J-dt di *xp(--2-fvt - i2xf.,) R- 0T) (5-2)

These I interrelationships indicate that the I SCF A, will result

from TCF Ri, whether we proceed by way of the WDF or the CAP.

We have, in detail, WDF

Wi(t~f) -di exp(-12ivfi) Ri(t,,•,)

a 6(t - ma) Sdv oxN(-i2tf) R(t,T) 2A4 60t 2qA) +

m

4. a (a*j~A dT exp(-12wfi) R(t,,r) 2A~ A(r (2q + 1)6)

mq

.L A) 6(t- ma) W(tF)of (f - -)

m q

+ & -(Ii )A) W(t,f) (0 (-1)q 6(f - -1) U

m q

"a ½2 6(t - mA) W(t,f - g) +
m q

+( q
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~. A At WMA, f-
m q

~ 6t -(m + (-1)q W(m +. 1)6,f-

m q

a 6 (t -MA) Wa(mA, f +. j. A (t -(m + ~))WaC((m + ~Af

&A~ (t D A) Wa(I*A'f) (8)

n

using (42) and (43). Thus, the areas of the impulses in WI are equal to

the approximations Wa developed in (42) and (43), within a scale factor of

A/2.

Continuing on, from (B-3), the SCF is

A,(V'f) -,dt exp(-12.Nvt) Wi(t~f) ,

- ;~dt exp(-i2iyvt) W(t,f - -1) 6(t - ina) +

q m

+ dt exp(-i2wvt) W(t,f - -9) aA (t - (m÷ ½)) -

q m

8-3
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A uf - A d 6u-V

q m

+. 2(-,•° A(v,. -1 42)-*•)m 6(v - M)
q m

2j 24 A~ -

q m

+ (-,•°•m ,(v.- f,, -•-)
q m

"A .A , f- -1) for all ,f . (8-5)

q4.m even

Thus, the SCF Ai, resulting from the impulsive sampling approach applied

to the TCF, Is not impulsive at all in the u,f plane, and is Identical with

the approximations A a developed In (51) and (62).

Proceeding instead via the CAF, we have

Xi(VOT) - dr exp(-12.Nvt) Ri(t'T)=

* A 6(T - 2qA) 5 dt exp(-12ivt) R(t,T) & 6(t - mA) +

q m

+4 6(t - (2q + l)a) fdt exp(-i2irut) R(t,T) A26(t - (m + 2)A)

m
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SA) 6(T -2a&) ( 6(v ) A .

q m

q m

A 6(r - 2qA) . x(V -, +r) ÷

q m

+. A~ ( - (2q + Il)A) ý -I)m x(u v ,r (8-6)
q m

A 6(1 - 2qA)' x(V - M, 2q,) +

q m

A-( 2qA) xa(v,2qA) +. Aý6 (T - (2q +. 1)6) x8(u.(2q + l)A~)

q q

A 2 (v - nA) Xa(V,nA) (8-7)
n

via (56) and (57). Thus, the areas of the impulses in xa are equal to

the approximations Xa in (56) and (57), within a scale factor of A.
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Now strictly speaking, there is no need to proceed to SCF A via the

CAF xi, since (B-2) shows that there is only one Ai function, regardless

of how reached. Nevertheless, for completeness, we also present the last

route. We have, using (8-6),

A1 (Vf) - d exp(-12hrfc) X1 (U,T)

m 'Cd" 'xp(-i2 "'f") X(V - MIT) 2A (T - 2q-) +2 4

m q

+. J.ý(-l)MfdTr exp(-12Nf-t) x~o - MIT 26,E a( - (2q 4. )A)
m q

A(v , -,) 6(f - -1) *

m q

+ ½Z(-,)° ,(v ,-,=,f 2(-I• ,(, - -1 .I
m q

". A( .- , f - -) + ½ (-)m+q A(v - M, f -1)

m q m q

A( -, f -2) for all v,f, (B-8)
m q

m~q even

As anticipated, this is identical with (8-5). Thus we get a unique ýCF in

the v,f plane.
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APPENDIX C. RECOVERY VIA DIRECT CONVOLUTION

This appendix is closely coupled with the previous one; it shows how to

recover the original continuous two-dimensional TCF, CAF, and WDP from their

impulsive counterparts. From (8-5), (B-8), (51), (62), (53), (54), and

figure 6, the original SCF is

A(vf) - A1(uf) D(v,f) . (C-I)

WDF RECOVERY

We have, using (8-4),

W(t,f) - fdu exp(i2wut) Al(u,f) D(u,f)

t
Wi(t,f) 0 d(tf)

S• Wa(,f) A ddt - nlAf) for all t,f , (C-2)
S 2' 2' 2

n

where

A2 d(t,f) - dv exp(i2wvt) D(u,f)

sin[2r 1(l- 261fI)] o I

"for all t

o )fo >

( -I 2A0f1) sinc[ 1 (l - 241flI rect(af) . (C-3)

c-I



TR 8533

These results agree with (6, (27),?(28)]. Interpolation rule (C-2) uses the

available slices of information in the t,f plane of figure 8. A particular

case of (C-3) is

d(O,f) - (1 - 241fI) rect(Af) (C-4)

CAF RECOVERY

From (C-1) and (B-7), there follows

X(VT) d fdf exp(i2wfT) A1 (v,f) O(vf)

X1(ut,T) 66vr) -

*~xa(v~nA) a~(, na) for all V'r (C-5)
n

where

A( A fdf exp(12ifT) O(u,f)

sin.. ...... .) for i <

0 for j• >1

(1 - a jul) sinc - iv ) re t A ) .(C- B)

Interpolation rule (C-5) uses the available slices of information in the

U,T plane of figure 8. A special case of (C-6) is

A$(u,0) - (1 - a Jul) rect(½ Au) . (C-7)

C-2
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TCF RECOVERY

From (C-i) and (B-1),

R(t•,) . ['dv df exp(i2wut + 12wf') A1 (V,f) D(U,f)

't-

R1 (t,T) O r(t,r)

R(_U,tk) 62jy(t - 2,, _ %.A) for all t,t (C-8)
n t

n+t even

where

4 p(;.,T) . 42 Jf•du df exp(i2irut + i2wfi) D(vf)

sin2(Wt/A) si n2(tL

2 (t -2 )

sin(d) + sin(11) sin(d) - sin(11)A • A for all t,,r. (C-9)

Particular values are

41jy(± ),)=sinc(3) .(C-10)

It should be observed that (C-8) dictates two-dimensional interpolation in

the tT plane of figure 8. Attempts at simpler one-dimensional interpolation

in t or T alone are bound to fail.
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PROPERTIES OFs(t,r )

The two-dimensional function (t,T) is unlike any proposed previously

for interpolation of TCF R(tv). Some of its properties are listed here.

A 'lmA 2qa) --sin s 2 (-al (C.-12)' " f2(m2 . q21

If m o q or m o -q, then = 0. If m a q, then t - T/2, while if m -q,

then t - -T/2, giving

A2*o(tqa 2qA) - sinc(Zq) , (C.-3)

Thereforejk(ma,2qa) - 0 for all m,q, except that A2 0(0,O) 1 1. Similarly,

+ J)A.(2q + l)6) , 0 for all m,q (C-14)

If we define

J(t,T) a r(t,2T) - n2(tA . (C -15)

W2 (t 2-C

then
A(.F,t) -.1(o,, , (C-16)

meaning that .(t, 1 ) is symmetric about the 450 line in the tv plane.

Figure C-i depicts some sample values of k in the first quadrant. In

particular,

C-4
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a 2 ~ ( TA.( 2q + 1 A W2 [m2 1 q )23
p2

2  q - 2.... ,m 12-) q2]

Interpolation functionoP(t,T) decays sgowest along the t - ti/2 lines in

the t,T plane, and fastest along the t - 0 and - - 0 lines, So direct

interpolation of the TCF is not best approximated by horizontal or vertical

slices, but in fact, by points between these slices.

i ,
/

0 ~0 -

37e,

/

/

/

3' /1 21tY

/

/ __

4%0

Figure C-I. Sample Values of a2•(tT)
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APPENDIX 0. EVALUATION OF CAF

The original CAF of waveform s(t) is given by (73), In terms of

spectrum !(f) defined In (69). As in (87), we again presume that only the

discrece frequency calculations

94) a a exp(-i2ink/N) s(kA) for n( <(NA Y2 0)
k

are availatle, Since the frequency increment is Af (Na)", we

approximate CAF (73) according to

1 exp(i2w _• () 9n + 1) - - )
n

Cdf exp(12wivf) 9(f + V-) 9*(f NA) 4Y A'(f -.l Z
"2 2 NA , NA

n

* X~v~)O~6(T - n NA)

n

X(v, 7 n NA) for all v .(0-2)

n

Since waveform s(t) is approximately limited to Itl < T/2 (see (84) and

figure 9), then CAF x(vT) is approximately limited to ITI < T, as may

be swen by substituting 132) into (34):

0-1
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X(vr) a fdt exp(-i2wvt) s(t + -) s*(t - g) • 1-3)

iherefore, the approximate CAF " takes the appearance shown in figure D-1.

It is seen that overlap is negligible If we take

T < NA - T. i.e., 2T (0-4)

Thi; re'ulrement on the FFT size in (0-1) is the same as that established in

(93) for the approximate WDF W.

DISCREl!HAIION IN v and

In order to utilize available samples (0-1) in the evaluation of

app-oximation (D-2), we restrict the evaluation of the approximate CAF to

frequency-shift values

-,2m 1 • n -nm -÷ n-r

xi( ,m ¶) --•,j. exp(12v - v) m-- )-- S*(-n---m) for all t . (0-5)

n

Furthermore, we consider cnly the particular values of time delay given by

L * 1 ' exp(12wnq/ n + m )9*(f - m) * (0-6)
X(NA9 q Na 7 'Na' Na

n

since the right-hand side is now an N-point FFT for each m value of interest.

N values of q are swept out by each FFT. Compare (D-6) with (111).

0-2
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- A-T 0 TN4-r Nh

Figure 0-1. Delay-Aliased CAF
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APPENDIX E. TCF OF IMPULSIVELY-SAMPLED WAVEFORM

Suppore continuous waveform s(t) is sampled with an infinite impulse

train (with delay t ) yielding impulsive waveform

si(t) - s(t) A 6(t - to - ka) . (E-1)

k

The corresponding TCF is

Ri(t,,T) "si(t, + ) si(t - 2)-

" R(t,Y) a2 6(t - to + - ka) 6(t -to " 2 "mA). (E-2)

k m

This function has impulses in the t,v plane at

o 2

, i.e., at (E-3)

t -t ma- (k - m)A

Furthermore, the area of each of these impulses is 1:

fdt di 6(t - t+ -ka) A(t -t -ma)- 6(T +( ma -ka) -10 20 2 m)

(E-4)

So (E-2) can be expressed alternatively as

R1(t,v)- R(tv)A2 • 6(t-t- k m a)4( - (k -m)A) . (E-5)

km

El-
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Now let

n k +m, - k -m. (E-6)

Then n t t must be even, giving

R1(tT) -f(t'T) A2  '5 6(t -to - )6(.r - LA)2
n t.

n+1 even

A62. R (t0 + 2 % a) d(t- to A)A(T - IA) (E-7)
n 

00

n+A even

This is a slight generalization of (B-1), to allow for delayed sampling.

Thus, the two approaches, (8-l) and (E-l), yield identical results,

FUNDAMENTAL TWO-DIMENSIONAL SAMPLING PATTERNS

Suppose, in (B-1), that we let

R(t,T) = I for all t,v . (E.-8)

Then Rt(t.T) there approaches

ri(t,v) B-, a _2 6 (t .-- d(,- ta) .(E-9)

n I
n÷9 even

But, at the same time, use of (E-8) in SCF (35) yields

A(vf) - 6(u) 6(f) , (E-1O)

E-2
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while (B-5) and (B--8) approach

q m
qim even

Thus, (E-9) and (E-11) are a double Fourier transform pair:

ai (Vf) -,ffdt di exp(-12wvt - 12ifT) ri(t,t) . (E-12)

They generalize one-dimensional result (7)c(8) to two dimensions with

interspersed sampling. The impulse patterns of ri(to) and ai(uf) in

their respective domains are displayed in figures E-1 and E-2.

E-3
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.3

* 1. 0

*0 YA0

Figure E-2. Impulse Locations for rpt.~f) in (E-11).
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